Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 11: e16593, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38084140

RESUMO

Hepatocellular carcinoma (HCC) is a fatal malignancy that has limited treatment options. This study focused on the potential therapeutic effects of curcumin (CUR) and berberine (BBR) on the miR-221/SRY-box transcription factor 11 (SOX11) axis in HCC. We investigated the combined effects of CUR and BBR on HEPG2 and Huh7 cell survival and miR-221 expression using Cell Counting Kit-8 assays and RT-qPCR, respectively. Western blotting was used to detect changes in the apoptosis-related caspase-3/9 protein levels. We performed bioinformatics analysis and dual-luciferase assays and measured apoptotic protein levels to assess the role of the miR-221/SOX11 axis in mediating the effects of CUR-BBR. Both CUR and BBR suppressed HCC cell growth in a dose-dependent manner, with the most potent combined effect observed at a 2:1 ratio. CUR-BBR treatment significantly downregulated miR-221 expression, and miR-221 overexpression partially reversed the CUR-BBR-mediated decrease in cell survival. In addition, SOX11 was found to be a direct target of miR-221. CUR-BBR treatment upregulated SOX11 expression, and overexpression of SOX11 restored the inhibitory effects of CUR-BBR on cell growth, migration, and invasion and promoted apoptosis in the presence of miR-221. Furthermore, CUR-BBR activated pro-apoptotic proteins caspase-3/9 through the miR-221/SOX11 axis. The combined effect of CUR-BBR played an important role in inhibiting the growth of HCC cells. This combined effect was achieved by regulating the miR-221/SOX11 axis and activating the synthesis of pro-apoptotic proteins. Our findings highlight a promising combined therapeutic approach for HCC and underscore the importance of targeting the miR-221/SOX11 axis.


Assuntos
Berberina , Carcinoma Hepatocelular , Curcumina , Neoplasias Hepáticas , MicroRNAs , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Curcumina/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Berberina/farmacologia , Caspase 3/uso terapêutico , MicroRNAs/genética , Fatores de Transcrição SOXC/genética
2.
EMBO J ; 42(24): e114060, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38009297

RESUMO

Hepatocellular carcinoma (HCC) formation is a multi-step pathological process that involves evolution of a heterogeneous immunosuppressive tumor microenvironment. However, the specific cell populations involved and their origins and contribution to HCC development remain largely unknown. Here, comprehensive single-cell transcriptome sequencing was applied to profile rat models of toxin-induced liver tumorigenesis and HCC patients. Specifically, we identified three populations of hepatic parenchymal cells emerging during HCC progression, termed metabolic hepatocytes (HCMeta ), Epcam+ population with differentiation potential (EP+Diff ) and immunosuppressive malignant transformation subset (MTImmu ). These distinct subpopulations form an oncogenic trajectory depicting a dynamic landscape of hepatocarcinogenesis, with signature genes reflecting the transition from EP+Diff to MTImmu . Importantly, GPNMB+ Gal-3+ MTImmu cells exhibit both malignant and immunosuppressive properties. Moreover, SOX18 is required for the generation and malignant transformation of GPNMB+ Gal-3+ MTImmu cells. Enrichment of the GPNMB+ Gal-3+ MTImmu subset was found to be associated with poor prognosis and a higher rate of recurrence in patients. Collectively, we unraveled the single-cell HCC progression atlas and uncovered GPNMB+ Gal-3+ parenchymal cells as a major subset contributing to the immunosuppressive microenvironment thus malignance in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animais , Ratos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Hepatócitos , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Terapia de Imunossupressão , Microambiente Tumoral , Fatores de Transcrição SOXF , Glicoproteínas de Membrana/genética
3.
J Hepatol ; 79(6): 1435-1449, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37689322

RESUMO

BACKGROUND & AIMS: Remodeling the tumor microenvironment is a critical strategy for treating advanced hepatocellular carcinoma (HCC). Yet, how distinct cell populations in the microenvironment mediate tumor resistance to immunotherapies, such as anti-PD-1, remains poorly understood. METHODS: We analyzed the transcriptomic profile, at a single-cell resolution, of tumor tissues from patients with HCC scheduled to receive anti-PD-1-based immunotherapy. Our comparative analysis and experimental validation using flow cytometry and histopathological analysis uncovered a discrete subpopulation of cells associated with resistance to anti-PD-1 treatment in patients and a rat model. A TurboID-based proximity labeling approach was deployed to gain mechanistic insights into the reprogramming of the HCC microenvironment. RESULTS: We identified CD10+ALPL+ neutrophils as being associated with resistance to anti-PD-1 treatment. These neutrophils exhibited a strong immunosuppressive activity by inducing an apparent "irreversible" exhaustion of T cells in terms of cell number, frequency, and gene profile. Mechanistically, CD10+ALPL+ neutrophils were induced by tumor cells, i.e., tumor-secreted NAMPT reprogrammed CD10+ALPL+ neutrophils through NTRK1, maintaining them in an immature state and inhibiting their maturation and activation. CONCLUSIONS: Collectively, our results reveal a fundamental mechanism by which CD10+ALPL+ neutrophils contribute to tumor immune escape from durable anti-PD-1 treatment. These data also provide further insights into novel immunotherapy targets and possible synergistic treatment regimens. IMPACT AND IMPLICATIONS: Herein, we discovered that tumor cells reprogrammed CD10+ALPL+ neutrophils to induce the "irreversible" exhaustion of T cells and hence allow tumors to escape from the intended effects of anti-PD-1 treatment. Our data provided a new theoretical basis for the elucidation of special cell populations and revealed a molecular mechanism underpinning resistance to immunotherapy. Targeting these cells alongside existing immunotherapy could be looked at as a potentially more effective therapeutic approach.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Ratos , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Linfócitos T , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neutrófilos , Imunoterapia/métodos , Microambiente Tumoral , Linfócitos T CD8-Positivos , Fosfatase Alcalina
4.
Front Plant Sci ; 14: 1153293, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37223785

RESUMO

Low temperatures significantly affect the growth and yield of peanuts. Temperatures lower than 12 °C are generally detrimental for the germination of peanuts. To date, there has been no report on precise information on the quantitative trait loci (QTL) for cold tolerance during the germination in peanuts. In this study, we developed a recombinant inbred line (RIL) population comprising 807 RILs by tolerant and sensitive parents. Phenotypic frequencies of germination rate low-temperature conditions among RIL population showed normally distributed in five environments. Then, we constructed a high density SNP-based genetic linkage map through whole genome re-sequencing (WGRS) technique and identified a major quantitative trait locus (QTL), qRGRB09, on chromosome B09. The cold tolerance-related QTLs were repeatedly detected in all five environments, and the genetic distance was 6.01 cM (46.74 cM - 61.75 cM) after taking a union set. To further confirm that qRGRB09 was located on chromosome B09, we developed Kompetitive Allele Specific PCR (KASP) markers for the corresponding QTL regions. A regional QTL mapping analysis, which was conducted after taking the intersection of QTL intervals of all environments into account, confirmed that qRGRB09 was between the KASP markers, G22096 and G220967 (chrB09:155637831-155854093), and this region was 216.26 kb in size, wherein a total of 15 annotated genes were detected. This study illustrates the relevance of WGRS-based genetic maps for QTL mapping and KASP genotyping that facilitated QTL fine mapping of peanuts. The results of our study also provided useful information on the genetic architecture underlying cold tolerance during germination in peanuts, which in turn may be useful for those engaged in molecular studies as well as crop improvement in the cold-stressed environment.

5.
Protein Cell ; 14(7): 513-531, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-36921037

RESUMO

As an important part of tumor microenvironment, neutrophils are poorly understood due to their spatiotemporal heterogeneity in tumorigenesis. Here we defined, at single-cell resolution, CD44-CXCR2- neutrophils as tumor-specific neutrophils (tsNeus) in both mouse and human gastric cancer (GC). We uncovered a Hippo regulon in neutrophils with unique YAP signature genes (e.g., ICAM1, CD14, EGR1) distinct from those identified in epithelial and/or cancer cells. Importantly, knockout of YAP/TAZ in neutrophils impaired their differentiation into CD54+ tsNeus and reduced their antitumor activity, leading to accelerated GC progression. Moreover, the relative amounts of CD54+ tsNeus were found to be negatively associated with GC progression and positively associated with patient survival. Interestingly, GC patients receiving neoadjuvant chemotherapy had increased numbers of CD54+ tsNeus. Furthermore, pharmacologically enhancing YAP activity selectively activated neutrophils to suppress refractory GC, with no significant inflammation-related side effects. Thus, our work characterized tumor-specific neutrophils in GC and revealed an essential role of YAP/TAZ-CD54 axis in tsNeus, opening a new possibility to develop neutrophil-based antitumor therapeutics.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Neoplasias Gástricas , Humanos , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fatores de Transcrição/metabolismo , Neoplasias Gástricas/patologia , Neutrófilos/metabolismo , Neutrófilos/patologia , Transdução de Sinais/genética , Proteínas de Sinalização YAP , Microambiente Tumoral , Receptores de Hialuronatos/genética
6.
J Integr Plant Biol ; 65(4): 1077-1095, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36511124

RESUMO

Rice ARGONAUTE2 (OsAGO2) is a core component of the rice RNA-induced silencing complex (RISC), which is repressed by Magnaporthe oryzae (M. oryzae) infection. Whether and how OsAGO2-mediated gene silencing plays a role in rice blast resistance and which sRNAs participate in this process are unknown. Our results indicate that OsAGO2 is a key immune player that manipulates rice defense responses against blast disease. OsAGO2 associates with the 24-nt miR1875 and binds to the promoter region of HEXOKINASE1 (OsHXK1), which causes DNA methylation and leads to gene silencing. Our multiple genetic evidence showed that, without M. oryzae infection, OsAGO2/miR1875 RISC promoted OsHXK1 promoter DNA methylation and OsHXK1 silencing; after M. oryzae infection, the reduced OsAGO2/miR1875 led to a relatively activated OsHXK1 expression. OsHXK1 acts as a positive regulator of blast disease resistance that OsHXK1-OE rice exhibited enhanced resistance, whereas Cas9-Oshxk1 rice showed reduced resistance against M. oryzae infection. OsHXK1 may function through its sugar sensor activity as glucose induced defense-related gene expression and reactive oxygen species (ROS) accumulation in Nipponbare and OsHXK1-OE but not in Cas9-Oshxk1 rice. OsAGO2 itself is delicately regulated by OsPRMT5, which senses M. oryzae infection and attenuates OsAGO2-mediated gene silencing through OsAGO2 arginine methylation. Our study reveals an OsPRMT5-OsAGO2/miR1875-OsHXK1 regulatory module that fine tunes the rice defense response to blast disease.


Assuntos
Magnaporthe , Oryza , Magnaporthe/fisiologia , Oryza/metabolismo , Regulação da Expressão Gênica de Plantas , Resistência à Doença/genética , Regiões Promotoras Genéticas , Doenças das Plantas/genética
7.
Entropy (Basel) ; 24(6)2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35741512

RESUMO

In this paper, we study the finite-time stability of permanent magnet synchronous motors (PMSMs) with noise perturbation. To eliminate the chaos in a PMSM and allow it to reach a steady state more quickly within a finite time, we propose a novel adaptive controller based on finite-time control theory. Finite-time stability implies optimal convergence time and better robustness. Finally, numerical simulations are performed to demonstrate the effectiveness and feasibility of our new results.

8.
Front Plant Sci ; 13: 843271, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35386681

RESUMO

Ascorbate peroxidases (APXs) maintain cellular reactive oxygen species (ROS) homeostasis through their peroxidase activity. Here, we report that OsAPX1 also promotes ROS production such that a delicate cellular ROS homeostasis is achieved temporally after Magnaporthe oryzae infection. OsAPX1 specifically induces ROS production through increasing respiratory burst oxidase homologs (OsRBOHs) expression and can be inhibited by DPI, a ROS inhibitor. The time-course experiment data show that the simultaneous induction of OsAPX1 and OsRBOHs leads to ROS accumulation at an early stage; whereas a more durable expression of OsAPX1 leads to ROS scavenging at a later stage. By the temporal switching between ROS inducer and eliminator, OsAPX1 triggers an instant ROS burst upon M. oryzae infection and then a timely elimination of ROS toxicity. We find that OsAPX1 is under the control of the miR172a-OsIDS1 regulatory module. OsAPX1 also affects salicylic acid (SA) synthesis and signaling, which contribute to blast resistance. In conclusion, we show that OsAPX1 is a key factor that connects the upstream gene silencing and transcription regulatory routes with the downstream phytohormone and redox pathway, which provides an insight into the sophisticated regulatory network of rice innate immunity.

9.
J Clin Invest ; 132(9)2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35290241

RESUMO

The striatin-interacting phosphatase and kinase (STRIPAK) complexes integrate extracellular stimuli that result in intracellular activities. Previously, we discovered that STRIPAK is a key machinery responsible for loss of the Hippo tumor suppressor signal in cancer. Here, we identified the Hippo-STRIPAK complex as an essential player in the control of DNA double-stranded break (DSB) repair and genomic stability. Specifically, we found that the mammalian STE20-like protein kinases 1 and 2 (MST1/2), independent of classical Hippo signaling, directly phosphorylated zinc finger MYND type-containing 8 (ZMYND8) and hence resulted in the suppression of DNA repair in the nucleus. In response to genotoxic stress, the cyclic GMP-AMP synthase/stimulator of IFN genes (cGAS/STING) pathway was determined to relay nuclear DNA damage signals to the dynamic assembly of Hippo-STRIPAK via TANK-binding kinase 1-induced (TBK1-induced) structural stabilization of the suppressor of IKBKE 1- sarcolemma membrane-associated protein (SIKE1-SLMAP) arm. As such, we found that STRIPAK-mediated MST1/2 inactivation increased the DSB repair capacity of cancer cells and endowed these cells with resistance to radio- and chemotherapy and poly(ADP-ribose)polymerase (PARP) inhibition. Importantly, targeting the STRIPAK assembly with each of 3 distinct peptide inhibitors efficiently recovered the kinase activity of MST1/2 to suppress DNA repair and resensitize cancer cells to PARP inhibitors in both animal- and patient-derived tumor models. Overall, our findings not only uncover what we believe to be a previously unrecognized role for STRIPAK in modulating DSB repair but also provide translational implications of cotargeting STRIPAK and PARP for a new type of synthetic lethality anticancer therapy.


Assuntos
Neoplasias Gastrointestinais , Monoéster Fosfórico Hidrolases , Animais , Humanos , Mamíferos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Transdução de Sinais/fisiologia , Mutações Sintéticas Letais , Fatores de Transcrição
10.
Cancer Res ; 81(11): 3036-3050, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33619115

RESUMO

Most primary liver cancer (PLC) cases progress mainly due to underlying chronic liver inflammation, yet the underlying mechanisms of inflammation-mediated PLC remain unclear. Here we uncover a TNF receptor II (TNFR2)-hnRNPK-YAP signaling axis in hepatic progenitor cells (HPC) essential for PLC development. TNFR2, but not TNF receptor I (TNFR1), was required for TNFα-induced activation of YAP during malignant transformation of HPCs and liver tumorigenesis. Mechanistically, heterogeneous nuclear ribonuclear protein K (hnRNPK) acted downstream of TNFα-TNFR2 signaling to directly interact with and stabilize YAP on target gene promoters genome-wide, therefore coregulating the expression of YAP target genes. Single-cell RNA sequencing confirmed the association of TNFR2-hnRNPK with YAP expression and the pathologic importance of HPC. Accordingly, expressions of TNFR2, hnRNPK, and YAP were all upregulated in PLC tissues and were strongly associated with poor prognosis of PLC including patient survival. Collectively, this study clarifies the differential roles of TNFRs in HPC-mediated tumorigenesis, uncovering a TNFR2-hnRNPK-centered mechanistic link between the TNFα-mediated inflammatory milieu and YAP activation in HPCs during PLC development. SIGNIFICANCE: This work defines how hnRNPK links TNFα signaling and Hippo pathway transcription coactivator YAP in hepatic progenitor cells during primary liver tumorigenesis.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Regulação Neoplásica da Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Células-Tronco/patologia , Fatores de Transcrição/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proteínas de Ciclo Celular/genética , Proliferação de Células , Feminino , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Humanos , Neoplasias Hepáticas/genética , Prognóstico , Ratos , Ratos Sprague-Dawley , Receptores Tipo II do Fator de Necrose Tumoral/genética , Transdução de Sinais , Células-Tronco/metabolismo , Fatores de Transcrição/genética , Células Tumorais Cultivadas , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
11.
Nano Lett ; 21(1): 747-755, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33356330

RESUMO

The Yes-associated protein (YAP) is a major oncoprotein responsible for cell proliferation control. YAP's oncogenic activity is regulated by both the Hippo kinase cascade and uniquely by a mechanical-force-induced actin remodeling process. Inspired by reports that ovarian cancer cells specifically accumulate the phosphatase protein ALPP on lipid rafts that physically link to actin cytoskeleton, we developed a molecular self-assembly (MSA) technology that selectively halts cancer cell proliferation by inactivating YAP. We designed a ruthenium-complex-peptide precursor molecule that, upon cleavage of phosphate groups, undergoes self-assembly to form nanostructures specifically on lipid rafts of ovarian cancer cells. The MSAs exert potent, cancer-cell-specific antiproliferative effects in multiple cancer cell lines and in mouse xenograft tumor models. Our work illustrates how basic biochemical insights can be exploited as the basis for a nanobiointerface fabrication technology which links nanoscale protein activities at specific subcellular locations to molecular biological activities to suppress cancer cell proliferation.


Assuntos
Neoplasias Ovarianas , Proteínas Serina-Treonina Quinases , Actinas , Animais , Feminino , Humanos , Microdomínios da Membrana , Camundongos , Neoplasias Ovarianas/tratamento farmacológico , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais
12.
Cancer Cell ; 38(1): 115-128.e9, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32589942

RESUMO

Loss of Hippo tumor-suppressor activity and hyperactivation of YAP are commonly observed in cancers. Inactivating mutations of Hippo kinases MST1/2 are uncommon, and it remains unclear how their activity is turned off during tumorigenesis. We identified STRN3 as an essential regulatory subunit of protein phosphatase 2A (PP2A) that recruits MST1/2 and promotes its dephosphorylation, which results in YAP activation. We also identified STRN3 upregulation in gastric cancer correlated with YAP activation and poor prognosis. Based on this mechanistic understanding and aided by structure-guided medicinal chemistry, we developed a highly selective peptide inhibitor, STRN3-derived Hippo-activating peptide, or SHAP, which disrupts the STRN3-PP2Aa interaction and reactivates the Hippo tumor suppressor, inhibits YAP activation, and has antitumor effects in vivo.


Assuntos
Autoantígenos/metabolismo , Proteínas de Ligação a Calmodulina/metabolismo , Peptídeos/farmacologia , Proteína Fosfatase 2/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Neoplasias Gástricas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Sequência de Aminoácidos , Animais , Autoantígenos/genética , Proteínas de Ligação a Calmodulina/genética , Linhagem Celular Tumoral , Feminino , Via de Sinalização Hippo , Humanos , Estimativa de Kaplan-Meier , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Proteína Fosfatase 2/antagonistas & inibidores , Proteína Fosfatase 2/genética , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/prevenção & controle , Proteínas Supressoras de Tumor/genética , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
13.
J Exp Med ; 217(6)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32271880

RESUMO

Hyperactivation of YAP has been commonly associated with tumorigenesis, and emerging evidence hints at multilayered Hippo-independent regulations of YAP. In this study, we identified a new MST4-YAP axis, which acts as a noncanonical Hippo signaling pathway that limits stress-induced YAP activation. MST4 kinase directly phosphorylated YAP at Thr83 to block its binding with importin α, therefore leading to YAP cytoplasmic retention and inactivation. Due to a consequential interplay between MST4-mediated YAP phospho-Thr83 signaling and the classical YAP phospho-Ser127 signaling, the phosphorylation level of YAP at Thr83 was correlated to that at Ser127. Mutation of T83E mimicking MST4-mediated alternative signaling restrained the activity of both wild-type YAP and its S127A mutant mimicking loss of classical Hippo signal. Depletion of MST4 in mice promoted gastric tumorigenesis with diminished Thr83 phosphorylation and hyperactivation of YAP. Moreover, loss of MST4-YAP signaling was associated with poor prognosis of human gastric cancer. Collectively, our study uncovered a noncanonical MST4-YAP signaling axis essential for suppressing gastric tumorigenesis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinogênese/metabolismo , Carcinogênese/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Neoplasias Gástricas/enzimologia , Neoplasias Gástricas/patologia , Fatores de Transcrição/metabolismo , Transporte Ativo do Núcleo Celular , Proteínas Adaptadoras de Transdução de Sinal/química , Sequência de Aminoácidos , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proliferação de Células , Meios de Cultura Livres de Soro , Feminino , Células HEK293 , Humanos , Masculino , Pessoa de Meia-Idade , Fosforilação , Fosfotreonina/metabolismo , Ligação Proteica , Proteínas Serina-Treonina Quinases/deficiência , Estresse Fisiológico , Fatores de Transcrição/química , Resultado do Tratamento , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Sinalização YAP
14.
Int J Mol Sci ; 20(20)2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31614458

RESUMO

Small RNAs function to regulate plant defense responses to pathogens. We previously showed that miR825 and miR825* downregulate Bacillus cereus AR156 (AR156)-triggered systemic resistance to Pseudomonassyringae pv. tomato DC3000 in Arabidopsis thaliana (Arabidopsis). Here, Northern blotting revealed that miR825 and miR825* were more strongly downregulated in wild type Arabidopsis Col-0 (Col-0) plants pretreated with AR156 than in nontreated plants upon Botrytis cinerea (B. cinerea) B1301 infection. Furthermore, compared with Col-0, transgenic plants with attenuated miR825 and miR825* expression were more resistant to B. cinerea B1301, yet miR825- and miR825*-overexpressing (OE) plants were more susceptible to the pathogen. With AR156 pretreatment, the transcription of four defense-related genes (PR1, PR2, PR5, and PDF1.2) and cellular defense responses (hydrogen peroxide production and callose deposition) were faster and stronger in miR825 and miR825* knockdown lines but weaker in their OE plants than in Col-0 plants upon pathogen attack. Also, AR156 pretreatment caused stronger phosphorylation of MPK3 and MPK6 and expression of FRK1 and WRKY53 genes upon B. cinerea B1301 inoculation in miR825 and miR825* knockdown plants than in Col-0 plants. Additionally, the assay of agrobacterium-mediated transient co-expression in Nicotiana benthamiana confirmed that AT5G40910, AT5G38850, AT3G04220, and AT5G44940 are target genes of miR825 or miR825*. Compared with Col-0, the target mutant lines showed higher susceptibility to B. cinerea B1301, while still expressing AR156-triggered induced systemic resistance (ISR). The two-way analysis of variance (ANOVA) revealed a significant (P < 0.01) interactive effect of treatment and genotype on the defense responses. Hence, miR825 and miR825*act as negative regulators of AR156-mediated systemic resistance to B. cinerea B1301 in Arabidopsis.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Bacillus cereus/fisiologia , Resistência à Doença , MicroRNAs/genética , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Botrytis/patogenicidade , Regulação para Baixo , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes/efeitos dos fármacos , Imunidade Vegetal , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/microbiologia , RNA de Plantas/genética
15.
Int J Mol Sci ; 19(7)2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29970857

RESUMO

Blast disease is one of the major rice diseases, and causes nearly 30% annual yield loss worldwide. Resistance genes that have been cloned, however, are effective only against specific strains. In cultivation practice, broad-spectrum resistance to various strains is highly valuable, and requires researchers to investigate the basal defense responses that are effective for diverse types of pathogens. In this study, we took a quantitative proteomic approach and identified 634 rice proteins responsive to infections by both Magnaporthe oryzae strains Guy11 and JS153. These two strains have distinct pathogenesis mechanisms. Therefore, the common responding proteins represent conserved basal defense to a broad spectrum of blast pathogens. Gene ontology analysis indicates that the “responding to stimulus" biological process is explicitly enriched, among which the proteins responding to oxidative stress and biotic stress are the most prominent. These analyses led to the discoveries of OsPRX59 and OsPRX62 that are robust callose inducers, and OsHSP81 that is capable of inducing both ROS production and callose deposition. The identified rice proteins and biological processes may represent a conserved rice innate immune machinery that is of great value for breeding broad-spectrum resistant rice in the future.


Assuntos
Magnaporthe/patogenicidade , Oryza/microbiologia , Doenças das Plantas/microbiologia , Proteômica/métodos , Resistência à Doença
16.
Front Plant Sci ; 8: 238, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28293243

RESUMO

Induced resistance response is a potent and cost effective plant defense against pathogen attack. The effectiveness and underlying mechanisms of the suppressive ability by Bacillus cereus AR156 to Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) in Arabidopsis has been investigated previously; however, the strength of induced systemic resistance (ISR) activity against Botrytis cinerea remains unknown. Here, we show that root-drench application of AR156 significantly reduces disease incidence through activation of ISR. This protection is accompanied with multilayered ISR defense response activated via enhanced accumulation of PR1 protein expression in a timely manner, hydrogen peroxide accumulation and callose deposition, which is significantly more intense in plants with both AR156 pretreatment and B. cinerea inoculation than that in plants with pathogen inoculation only. Moreover, AR156 can trigger ISR in sid2-2 and NahG mutants, but not in jar1, ein2 and npr1 mutant plants. Our results indicate that AR156-induced ISR depends on JA/ET-signaling pathway and NPR1, but not SA. Also, AR156-treated plants are able to rapidly activate MAPK signaling and FRK1/WRKY53 gene expression, both of which are involved in pathogen associated molecular pattern (PAMP)-triggered immunity (PTI). The results indicate that AR156 can induce ISR by the JA/ET-signaling pathways in an NPR1-dependent manner and involves multiple PTI components.

17.
Mol Plant Pathol ; 17(2): 272-85, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25976113

RESUMO

Zoospore chemotaxis to soybean isoflavones is essential in the early stages of infection by the oomycete pathogen Phytophthora sojae. Previously, we have identified a G-protein α subunit encoded by PsGPA1 which regulates the chemotaxis and pathogenicity of P. sojae. In the present study, we used affinity purification to identify PsGPA1-interacting proteins, including PsHint1, a histidine triad (HIT) domain-containing protein orthologous to human HIT nucleotide-binding protein 1 (HINT1). PsHint1 interacted with both the guanosine triphosphate (GTP)- and guanosine diphosphate (GDP)-bound forms of PsGPA1. An analysis of the gene-silenced transformants revealed that PsHint1 was involved in the chemotropic response of zoospores to the isoflavone daidzein. During interaction with a susceptible soybean cultivar, PsHint1-silenced transformants displayed significantly reduced infectious hyphal extension and caused a strong cell death in plants. In addition, the transformants displayed defective cyst germination, forming abnormal germ tubes that were highly branched and exhibited apical swelling. These results suggest that PsHint1 not only regulates chemotaxis by interacting with PsGPA1, but also participates in a Gα-independent pathway involved in the pathogenicity of P. sojae.


Assuntos
Quimiotaxia , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Phytophthora/citologia , Phytophthora/patogenicidade , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Regulação da Expressão Gênica , Inativação Gênica , Hifas/crescimento & desenvolvimento , Filogenia , Phytophthora/genética , Esporos/fisiologia , Transformação Genética
18.
J Biomed Mater Res A ; 100(8): 1946-53, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22492628

RESUMO

A novel, simple, and rapid method to fabricate thermoresponsive micropatterned substrate for cell adhesion, growth, and thermally induced detachment was developed. Thermoresponsive polymer, poly(N-isopropylacrylamide) (PNIPAAm), was grafted onto the surface of polystyrene (PS) film with microstructure by plasma-induced graft polymerization technique. The thermoresponsive micropatterned films were characterized by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, hydrogen nuclear magnetic resonance ((1) H NMR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM). These results indicated that the grafting ratio of PNIPAAm increased with increasing roughness of PS film. However, the microstructures on the substrate were not affected by grafted PNIPAAm. The optimal grafting conditions, such as plasma treatment time, monomer concentration, graft polymerization time, and graft medium were investigated. The thermoresponsive micropatterned films were investigated with the fibroblast cell (L929) adhesion, proliferation, and thermally induced detachment assay. The microstructure on the thermoresponsive micropatterned substrate facilitated cell adhesion above the lower critical solution temperature (LCST) of PNIPAAm and cell detachment below the LCST. Moreover, it can be used to regulate cell organization and tissue growth.


Assuntos
Técnicas de Cultura de Células/métodos , Fibroblastos/citologia , Poliestirenos/química , Temperatura , Acrilamidas/farmacologia , Resinas Acrílicas , Animais , Adesão Celular , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/ultraestrutura , Membranas Artificiais , Camundongos , Microscopia Eletrônica de Varredura , Nitrogênio/análise , Espectroscopia Fotoeletrônica , Gases em Plasma/química , Polimerização/efeitos dos fármacos , Polímeros/farmacologia , Poliestirenos/farmacologia , Reprodutibilidade dos Testes
19.
J Colloid Interface Sci ; 350(2): 471-9, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20691452

RESUMO

A novel bio-functionalized thermoresponsive surface was prepared by UV-induced copolymerization of N-isopropylacrylamide (NIPAAm) and acrylic acid (AAc) and grafting onto tissue culture polystyrene (TCPS) dishes, followed by immobilization of galactose ligands. The results indicated that the roughness of surfaces was increased after copolymerization with NIPAAm and immobilization of galactose ligands. The amount of monomers grafted on TCPS was increased with increasing photografting time. The temperature sensitivity of surface was improved with increasing amount of NIPAAm grafted on TCPS, and surface hydrophilicity was enhanced by the introduction of carboxyl groups and galactose ligands, which accelerated cell detachment. Adhesion, proliferation, detachment and transshipment of human hepatoma cell line (HepG2) on the modified surfaces were examined. The immobilization of galactose ligands facilitated the cell adhesion and proliferation. HepG2 cells growing on the modified surfaces could be recovered spontaneously by only reducing culture temperature. The activity of cells obtained by temperature induction was higher than that obtained by enzymatic digestion.


Assuntos
Galactose/química , Acrilamidas/química , Acrilatos/química , Adesão Celular , Células Cultivadas , Células Hep G2 , Humanos , Ligantes , Microscopia de Força Atômica , Propriedades de Superfície , Temperatura
20.
Zhonghua Zheng Xing Wai Ke Za Zhi ; 20(3): 177-9, 2004 May.
Artigo em Chinês | MEDLINE | ID: mdl-15449614

RESUMO

OBJECTIVE: To evaluate the efficacy of semiconductor low level laser irradiation for the treatment of postoperative exposure of hydroxyapatite orbital implants. METHODS: 22 cases with postoperative exposure of hydroxyapatite orbital implants were divided into three groups according to the size of implants exposure. The exposure wound in the 3 groups was irradated with semiconductor low level laser 5 min per day for 5-15 days. The follow-up period ranged from 2 to 24 months. RESULTS: In the group with less then 3 mm of exposure, the wound healed in 1 week after 5-10 days irradiation; in the group with implant exposure of 4-7 mm, the would healed in 1-2 weeks after 10-15 days irradiation; in the group with implant exposure of 8-10 mm, the would healed in 2-3 weeks after 10-15 days irradiation. Compared with the treatments of drugs and/or surgical repair, which was used for another 20 cases of exposure of hydroxyapatite orbital implants, semiconductor low level laser increased healing rate obviously in the groups with implant exposure of 4-7 mm and 8-10 mm (P = 0.019, 0.018). CONCLUSION: Semiconductor low level laser has better effects than drugs and/or surgical repair for exposure of hydroxyapatite orbital implants.


Assuntos
Terapia com Luz de Baixa Intensidade/métodos , Implantes Orbitários/efeitos adversos , Complicações Pós-Operatórias/radioterapia , Adolescente , Adulto , Idoso , Criança , Durapatita/uso terapêutico , Olho/patologia , Olho/efeitos da radiação , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias/etiologia , Semicondutores , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...